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[1] Land surface models involve a large number of interdependent parameters that
affect the physics of how surface energy fluxes are partitioned between latent heat,
sensible heat, net radiative, and ground heat fluxes. The goal of an optimal parameter
and uncertainty analysis of a land surface model is to identify a range of parameter sets
that enable model predictions to be bounded within observational uncertainties. Here
we apply Bayesian stochastic inversion (BSI) using very fast simulated annealing
(VFSA) to identify parameter sets of the Chameleon surface model (CHASM) land
surface model that are consistent with the uncertainty limits ascribed to a high-quality
data set collected from Cabauw, Netherlands. These results are compared to the
parameter sets obtained through the multicriteria (MC) approach. All analyses evaluate
model performance against daily and monthly mean observations of sensible, latent, and
ground heat fluxes. BSI and MC identify similar ‘‘best fit’’ model parameter sets
that improve CHASM performance over default parameter settings. The three most
important CHASM parameters at Cabauw are minimum stomatal resistance, vegetation
roughness length, and vegetation fraction cover. BSI is based on a Bayesian inference
model such that that it expresses uncertainty in terms of a posterior probability
density function, different moments of which provide information about parameter
means and covariances. Although MC gives a range of possible optimal parameters
through the concept of a Pareto set, we found that these ranges did not provide a
consistent or representative view of the uncertainty within the observational data.
The BSI algorithm in the current study is particularly efficient in that it only requires
about double the number of model evaluations than the MC algorithm. This is a
substantial saving over other more accurate methods to evaluate uncertainty such as the
Metropolis/Gibbs’ sampler that requires at least 40 times more computations than the
BSI algorithm to obtain similar results. INDEX TERMS: 1694 Global Change: Instruments and

techniques; 3322 Meteorology and Atmospheric Dynamics: Land/atmosphere interactions; 3337

Meteorology and Atmospheric Dynamics: Numerical modeling and data assimilation; 9335 Information
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1. Introduction

[2] Land surface modeling is considered one of the major
sources of uncertainty for current climate change prediction
[Crossley et al., 2000; Intergovernmental Panel on Climate
Change, 1996]. The Project for Intercomparison of Land
surface Parameterization Schemes (PILPS) demonstrates
that there is a wide disparity between land surface schemes,
with little agreement on predictions of soil moisture and
evaporation [Henderson-Sellers et al., 1996]. This disparity
comes from differences in model structures (e.g., number of
soil layers, number of physical processes represented) and

model parameter settings. While the PILPS project gives a
qualitative indication of the spread of land surface model
predictions created by these differences, it is not clear how
representative this spread is of observational uncertainty.
Moreover, it is not possible to evaluate how these qualita-
tive uncertainty estimates could be used to estimate uncer-
tainties of climate model predictions that stem from a given
land surface model without associating the uncertainty to
particular land surface model parameters or knowing how
uncertainty in the choice of one parameter affects the choice
of other parameters.
[3] We present here Bayesian stochastic inversion (BSI)

using very fast simulated annealing (VFSA) [Sen and
Stoffa, 1995, 1996; C. Jackson et al., An efficient stochastic
Bayesian approach to optimal parameter and uncertainty
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estimation for climate model predictions, submitted to
Journal of Climate, 2002, hereinafter referred to as Jackson,
submitted manuscript, 2002] as an efficient, systematic, and
quantitative means for identifying optimal parameters and
uncertainty for 12 parameters within the Chameleon surface
model (CHASM) using data from Cabauw, Netherlands.
BSI is an example of an approximate but efficient Monte
Carlo importance sampling technique and therefore has as
one of its primary objectives the mapping of a multidimen-
sional surface that describes the misfit between observations
and model predictions. The application of statistical mea-
sures of uncertainty arising frommultiple, nonlinearly related
parameters has been previously developed for surface
hydrology [Beven and Binley, 1992; Beven, 1993; Freer et
al., 1996; Romanowicz et al., 1994, 1996; Kuczera and
Parent, 1998; Campbell et al., 1999; Thiemann et al., 2001;
Bates and Campbell, 2001]. The Bayesian formulation of a
land surface model problem is most similar to the work of
Franks and Beven [1997] who provides an example of how
Bayesian statistics and Monte Carlo sampling of model
parameters can be combined to give likelihood estimates of
parameters governing a simple soil vegetation-atmosphere
transfer (SVAT) scheme. Franks and Beven find that for a
given model performance criterion increasing levels of
model complexity leads to a growing number of acceptable
model configurations and therefore increasing levels of
predictive uncertainty. We expand on this body of work
by providing an overview of how parameter optimization is
related to uncertainty estimation and the numerical issues
related to the efficiency of calculating probability density
functions (PPDs) and parameter covariances.
[4] The minima of a multidimensional surface describing

the misfit between model predictions and observations as a
function of model parameters identify the optimal parameter
settings. Identifying these minima is particularly difficult for
land surface and hydrology models as many of these models
contain more than 50 interdependent parameters. Many
methods exist for identifying optimal parameters. Popula-
tion-based evolution strategies such as the shuffled complex
evolution global optimization algorithm have proved to be
effective in problems involving simplified rainfall-runoff
models [Wang, 1991; Duan et al., 1992, 1994]. For more
complex models, however, measurement errors and model
approximations made it difficult for this method to identify
a unique optimal parameter set and led to the development
of the multicriteria (MC) method based on the Genetic
Algorithm [Gupta et al., 1998]. Recently, Gupta et al.
[1999] used the MC method to estimate the optimal param-
eters and uncertainty ranges for a particularly complex land
surface model, Biosphere Atmosphere Transfer Scheme
(BATS). The results were encouraging in that the BATS
model performed substantially better when optimized using
the MC method. Xia et al. [2002] applied the MC method to
the Cabauw data set for the CHASM [Desborough, 1999]
land surface model to investigate the relationship between
the level of model complexity and the accuracy of simulated
results. Their results show that complex models perform
better than the more simplified models when optimal
parameters have been identified. Sen et al. [2001] confirmed
that the SVAT land surface model that was optimized within
‘‘off-line’’ calculations was able to improve the perfor-
mance of the Community Climate Model version 3.

[5] The task of sampling the most significant parts of
multidimensional misfit between model predictions and
observations is distinct from the task of identifying optimal
parameters. The latter is much less computationally intense
as one need not worry about how one finds the minima of
this multidimensional surface. However, it is the shape of
the surface around the minima that is most directly related
to parameter uncertainty (assuming that the errors are
Gaussian). In the case when one may not assume Gaussian
errors, PPDs give the best indication of relative likelihood
of possible solutions. The BSI methodology strikes a
balance between these two objectives. So while we may
expect the BSI algorithm to identify a similar set of optimal
parameters compared to what may be obtained through the
MC methodology, we may also expect that BSI will involve
more model evaluations to obtain the additional information
needed to describe the uncertainty. Our main objective is to
apply the BSI to the identification of optimal parameters
and uncertainty estimates for the CHASM land surface
model using the Cabauw data set. Besides the work by
Franks and Beven [1997] who discuss the Bayesian formu-
lation of uncertainty estimation in a general sense, we are
not aware of any previous attempt to evaluate and display
uncertainties for land surface model parameters. We also
compare optimal parameters and uncertainty ranges
obtained through the BSI analysis with the optimal param-
eters and estimates of the range of optimal parameters
obtained through the MC methodology. The purpose of this
comparison is to provide a consistency check on our results
as well as to examine more closely the meaning of optimal
parameter uncertainty as may be seen through the Pareto set
(defined to be the set of acceptable solutions when no
weighting between multiple criteria is specified) that is
produced by the MC method.

2. Cabauw Data and CHASM Land
Surface Model

[6] The observations of land surface energy fluxes at
Cabauw (51�580N, 4�560E), Netherlands, are described in
detail by Beljaars and Bosveld [1997]. The quality of the data
is considered to be very good. Measurements were made
from a tower surrounded by short grass divided by narrow
ditches without obstacles or perturbation of any importance
within a distance of 200 m. Beyond 200 m some scattered
houses and trees can be found. The climate in the area is
characterized as moderate maritime with prevailing westerly
wind. Data were collected at half hour intervals for the entire
year of 1987. During this year, 776 mm of precipitation fell
(including several snowfall events) and the annual mean air
temperature was 282 K. The vegetation cover is close to
100% year round. The soil contains 35–55% clay. Measure-
ments were taken of downward short-wave radiation, down-
ward long-wave radiation, precipitation, air temperature,
wind speed, specific humidity, sensible heat flux (SH), latent
heat flux (LH), net radiation (Rnet), and ground surface heat
flux (GS). The Cabauw data set has been used to investigate
relative performance differences of several commonly used
land surface models [Chen et al., 1997; Desborough, 1999;
Xia et al., 2002].
[7] CHASM is designed to accommodate a wide range of

representations of the land surface energy balance within a
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common modeling framework [Desborough, 1999]. The
representation of the land surface can take on a number of
formulations ranging from a complex mosaic structure
[Koster and Suarez, 1992] all the way to the most simple
zero energy balance formulation [Manabe, 1969]. Here we
use only the complex mosaic representation. Within this
representation, the land-atmosphere interface is divided into
two tiles. The first tile is a combination of bare ground and
exposed snow, with the second tile consisting of dense
vegetation. The tiles may be of different sizes, and the
fluxes out of each tile are area-weighted. Because a separate
surface energy balance is calculated for each tile, tempera-
ture variations may exist across the land-atmosphere inter-
face. Depending on the surface type, a prognostic bulk
temperature for the storage of energy and a diagnostic skin
temperature for the calculation of surface energy fluxes are
determined. Snow cover fraction for both the ground and
foliage surface is calculated as functions of the snowpack
depth, snowpack density, and vegetation roughness length.
The vegetation fraction is divided into wet and dry fractions
if canopy interception is allowed. This model has explicit
parameterizations for canopy resistance, canopy intercep-
tion, vegetation transpiration, and bare ground evaporation
but has no explicit canopy air space.
[8] CHASM uses the formulation of Manabe [1969] for

the hydrologic component of the land surface in which the
root zone is treated as a bucket with finite water holding
capacity. Any water accumulation beyond this capacity is
assumed to be runoff. Except for moisture in the root zone,
water can be stored as snow on the ground or canopy. The
soil contains four layers with finite heat capacity. The
calculation of soil temperature assumes no heat flux across
the bottom of the lowest layer. Each tile has four evapora-
tion sources: canopy evaporation, transpiration, bare ground
evaporation, and snow sublimation. More details on
CHASM can be found in the work of Desborough [1999]
and Xia et al. [2002].

3. Methods of Optimal Parameter and
Uncertainty Estimation

3.1. Bayesian Stochastic Inversion

[9] The goal of BSI is to estimate a multidimensional
(joint) probability distribution that expresses which combi-
nation of model parameter values are deemed ‘‘acceptable.’’
It is not logical or possible to express this probability in an
absolute sense. Rather, it is necessary to express these
probabilities as being conditional on certain desired con-
straints. Specifically, we would like to know which sets of
model parameter values would allow model predictions to
exist within observational uncertainties. The Bayesian for-
mulation expresses the basic concept of conditional proba-
bilities that we are interested in, where the posterior PPD is
the desired result. According to Bayes’ rule, derived from
the definition of conditional probabilities, the PPD is
defined as

s mjdobs
� �

¼ l dobsjmð Þp mð ÞR
l dobsjmð Þp mð Þdm ; ð1Þ

where m is a vector containing a set of parameter values
dobs is the data vector, s(mjdobs) is the conditional

probability for each set of parameter values represented
by vector m (given data in vector dobs), l(dobsjm) is the
likelihood function expressing the conditional probability
for reproducing observations dobs from a model with
parameter values m, p(m) is a ‘‘prior’’ probability for m
(given expert judgment or other reasons to constrain the
possible choices of m independent of data dobs). Because
the data vector dobs within the likelihood function does
not change, it should be understood that the likelihood
function is primarily a function of m [Box and Tiao, 1992].
When Gaussian errors are assumed within the observations
and model predictions, the likelihood function takes the
form,

l dobsjmð Þ / exp �S � E mð Þð Þ; ð2Þ

where E(m) is a cost function that gives some measure of
mismatch between observations and model predictions and
S is a scaling factor discussed more fully in section 4.3. The
cost function can be defined in many ways. Assuming
Gaussian errors in the data, the most appropriate choice is

E mð Þ ¼
XN
i¼1

1

2N
dobs � g mð Þð ÞTC�1 dobs � g mð Þð Þ

h i
i
; ð3Þ

where there are N different sets of observations, g(m) is the
forward model, and C�1 is the inverse of the data
covariance matrix that includes both the observational error
and modeling uncertainty error. Although the form of the
PPD based on equation (3) assumes Gaussian errors in
observations and in model predictions, because the forward
model is a part of the error function, there is no expectation
that the PPD would itself be Gaussian [Tarantola, 1987].
[10] Once the PPD is known, the parameter means hmi or

covariances can be obtained through multidimensional
integrals of the general form

I ¼
Z

f mð Þs mjdobsð Þdm; ð4Þ

where f (m) = m for the parameter means or f (m) = (m �
hmi)(m � hmi)T for the parameter covariance matrix.
Because the PPD is multidimensional, it is difficult to
visualize. One approach is to display the marginal PPD,
defined to be the one-dimensional projection of the multi-
dimensional PPD (equivalent to f (m) = 1 in equation (4) and
integrating over all dimensions except for the dimension of
interest).

3.2. Numerical Methods

[11] The principle challenge in calculating integrals based
on equation (4) is in deriving the PPD, which can be very
intense computationally. We review here several numerical
methods for estimating the PPD and focus on VFSA which
has been highlighted by Sen and Stoffa [1996] as being
particularly efficient. Jackson et al. (submitted manuscript,
2002) provide a more complete description of VFSA and
how it may be optimized for particular problems.
3.2.1. Grid Search
[12] This straightforward method involves subdividing

model parameter space into a number of equally spaced
intervals and enumerating every possible combination of

JACKSON ET AL.: PARAMETER AND UNCERTAINTY ESTIMATION ACL 9 - 3



model parameters and evaluating the cost function for each
of these combinations [Sen and Stoffa, 1996]. The disad-
vantages of this method are the large number of forward
model calculations, many of which do not contribute
substantially to the integral in equation (4), and the fact
that the resolution is constrained by the interval spacing.
3.2.2. Gibbs’ Sampler
[13] The Gibbs’ sampler is a version of an ‘‘importance

sampling’’ technique that improves the efficiency of
the calculation by sampling model parameter sets from the
Gibbs’ distribution which is, in effect, equivalent to the
desired PPD [Metropolis et al., 1953; Kirkpatrick et al.,
1983]. The concept of the Gibbs’ sampler originates from
the numerical techniques developed in statistical mechanics
to simulate the macroscopic behavior of a system with a
large number of interacting particles. The numerical imple-
mentation of the Gibbs’ sampler is based primarily on the
heat-bath algorithm in which the relative probability of
different model parameter sets are evaluated in advance of
any model evaluations [Geman and Geman, 1984; Rothman,
1986]. This algorithm also requires parameter space to be
subdivided into a number of equally spaced intervals.
Another variant of the Gibbs’ sampler is based on the
Metropolis algorithm [Metropolis et al., 1953; Kirkpatrick
et al., 1983]. In the Metropolis formulation, a starting model
is selected at random and the cost function is evaluated
E(mi). The starting model is perturbed to obtain a new model
mi+1 and new cost function evaluation E(mi+1). If the
change in ‘‘energy’’ �E = E(mi+1) � E(mi) is negative,
then the new model is accepted. If the change is positive, the
new model is accepted with a probability

P ¼ exp
��E

T

� 	
; ð5Þ

where T is a control parameter analogous to temperature.
After a large number of iterations at constant temperature,
the pdf for m (notated as prob(m)) converges to the
following Gibbs’ distribution

prob mð Þ ¼ exp �E mð Þ=Tð ÞX
exp �E mð Þ=Tð Þ

: ð6Þ

[14] As noted by Sen and Stoffa [1996], the fact that the
distribution for prob(m) with T = 1 in equation (6) is the
same as for s(m/dobs) in equation (1), except for the presence
of the prior distribution p(m), means that when using the
Gibbs’ sampler at constant temperature, the distribution will
converge to the distribution of the PPD without bias when
assuming a constant prior. Because sampled models are not
discretized in the Metropolis formulation of the Gibbs’
sampler, the resolution of the Metropolis/Gibbs’ sampler
will depend on the number of iterations. The resolution in
general will be much greater near the minimum in E(m)
because these regions tend to be sampled more often. While
this method can substantially improve the efficiency of
evaluating the PPD, the number of forward model calcula-
tions is still prohibitively large for many purposes.
3.2.3. Very Fast Simulated Annealing
[15] One may use the temperature construct within the

Metropolis algorithm to locate the global minimum in E(m)

by very slowly lowering the temperature parameter within
equation (6). This process is analogous to the annealing
process within a physical system, whereby the lowest
energy state between atoms or molecules (the crystalline
form) is achieved by gradually cooling the substance within
a heat bath. Because of this physical analogy, the algorithm
is known as Simulated Annealing. Ingber [1989] introduced
within the Simulated Annealing algorithm a new procedure
for selecting parameter sets according to a temperature-
dependent Cauchy distribution. This modified algorithm
further enhances the ability of Simulated Annealing to
converge efficiently and robustly to a minimum in E(m)
and is referred to as VFSA. The acceptance criterion
for successive model selections is the same as for the
Metropolis rule.
[16] One of the central points in the discussion on what

efficiencies can be afforded within the numerical methods
that are adopted for optimal parameter and uncertainty
estimation is that there needs to be a balance between the
computational effort that is spent identifying optimal model
parameters and the computational effort that is spent map-
ping the multidimensional PPD. The VFSA algorithm as
presented by Ingber [1989] and used by Sen and Stoffa
[1996] is an efficient method to identify optimal parameters,
especially when nonlinearities are important. At the other
extreme, Monte Carlo or Grid search algorithms would
provide the most accurate (nonbiased) map of the multidi-
mensional PPD but may require more model evaluations
than one can afford to make. Sen and Stoffa [1996] argue
that one can slightly adapt the VFSA cooling schedule,
convergence acceptance criterion, and allow for numerous
repetitions of the minimization procedure to strike a balance
between these two objectives that is both efficient and
effective. Depending on the application, one can save
several orders of magnitude in the number of model
evaluations over either the Monte Carlo or Grid search
algorithms [Sen and Stoffa, 1996].
[17] The PPD derived through the VFSA search algo-

rithm is unavoidably biased toward the peaks of the PPD
through its procedure to change the temperature control
parameter during the selection process of model parame-
ters. However, the VFSA algorithm may be repeated a
number of times with different starting models to allow
sufficient sampling of the entire model space. This reduces
the biases of the PPD and improves the estimates of the
model covariance matrix. While variances may be under-
estimated relative to what may be obtained through the
Metropolis/Gibbs’ sampler, the normalized covariance
matrix (the correlation matrix) has been found to be nearly
equivalent between the two approaches [Sen and Stoffa,
1996].

3.3. Multicriteria Approach

[18] The MC parameter estimation methodology is pri-
marily developed as an optimization procedure that uses a
Genetic Algorithm to search out parameter sets that improve
a model’s performance [Yapo et al., 1998; Gupta et al.,
1998]. The term ‘‘multicriteria’’ refers to the fact that the
cost function is a vector giving a single cost function
measure for each field used to evaluate a model’s perfor-
mance. The cost function displayed in equation (3) is
considered a single criterion as the mismatch between
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model and observations for multiple fields is ultimately
expressed as a single number where one must provide a
reasonable weighting between each of the N fields used to
evaluate model performance. In the case of equation (3)
model-data comparisons of fields with different units are
weighted using the covariance matrix. The MC method tries
to avoid making assumptions about what the appropriate
weighting should be and instead identifies the Pareto set,
which is the set of model parameters that minimize the
mismatch between model predictions and observations for
each of the separate criteria. However, when it comes time
to picking an optimal parameter set from within the Pareto
set, one must choose an appropriate weighting anyway. The
optimal parameter sets that we select from the Pareto set
assumes equal weighting among all criteria.

4. Cost Function

4.1. Definition of Cost Function

[19] CHASM contains 13 parameters. Although many
parameters are not critical to the land surface energy balance
at Cabauw, we consider all parameters within the BSI and
MC analyses. The range of possible values and default
settings for each of these parameters are shown in Table 1.
The Cabauw data set contains four fields that can be com-
pared with model predictions including SH, LH, ground heat
flux (GS), and Rnet. Because the information about Rnet is
included in the forcing of the model, Rnet is not independent
of model evaluations of SH and LH, and therefore we choose
not to use Rnet to evaluate model performance. The measure
of mismatch between observations and model predictions is
given by equation (3). For BSI, we keep only the diagonal
components of the covariance matrix (variances) and use the
Cabauw data set to evaluate the variance for each half-hour
segment of the day (i.e., covariance matrix collapses into a
vector with 48 values). For the MC calculation, we reduce
the dimensionality of the covariance matrix further and use
only average variance for all data in the Cabauw data
(i.e., covariance matrix collapses into a scalar). This latter
definition of the cost function has been used in previous
applications of the MC method [Xia et al., 2002].

4.2. Cost Function Profiles

[20] Before attempting any optimal parameter or uncer-
tainty estimation of the CHASM model, it may be helpful to

use cost function ‘‘profiles’’ to display which parameters are
likely to be important. The cost function profiles can also be
used to objectively select parameters that most affect the
uncertainty. Conducting an uncertainty analysis over a
reduced number of parameters can significantly reduce the
cost of deriving the multidimensional PPDs. A similar
procedure is advocated by Bastidas et al. [1999] for
reducing the number of parameters involved in the MC
optimal parameter analysis.
[21] A cost function profile is a graph of the cost function

as a function of variations in a given parameter while
holding the value of all other parameters constant. These
graphs provide an expectation of the relative sensitivity of
the model to each of the model parameters. Because this
evaluation assumes linear independence between model
parameters, this estimate of the sensitivity may not reflect
the model’s true sensitivity. However, if the model’s
response to variations in model parameters were truly linear,
then the cost function profiles would provide an accurate
representation of the multidimensional PPD with only a few
model evaluations.
[22] Figure 1 shows a cost function profile analysis for 12

of the CHASM parameters. As we do not know in advance

Table 1. The Names, Default Values, Optimal Values Determined Through the Multicriteria Approach and Very Fast Simulated

Annealing, Ranges, and Descriptions of 13 Parameters of the CHASM Land Surface Modela

Parameter Default MC VFSA Minimum Maximum Description

ALBG 0.20 0.24 0.39 0.10 0.40 bare ground albedo
ALBN 0.75 0.76 0.98 0.50 1.00 snow albedo
ALBV 0.23 0.27 0.26 0.10 0.40 vegetation albedo
LEFM 2.00 5.0 4.5 4.0 6.0 maximum leaf area index
LEFS (fixed) 1.70 1.7 1.7 1.7 1.7 leaf area index seasonality parameter
VEGM 0.95 0.96 0.99 0.70 1.00 maximum fractional vegetation cover
VEGS 0.25 0.25 0.23 0.23 0.26 fractional vegetation cover seasonality
RCMIN 40.0 17.8 16.7 1.0 300 minimum canopy resistance, s/m
WRMAX 141 292 130 10 600 available water holding capacity, mm
Z0G 1.00 0.2 0.94 0.01 1.00 bare ground roughness length (10�2 m)
Z0N 4.00 4.00 1.73 1.00 6.00 snow surface roughness length (10�4 m)
Z0V 0.15 0.02 0.02 0.01 2.5 vegetation roughness length, m
TS 279 286 282 275 310 initial surface temperature, K

aMC, Multicriteria approach; VFSA, very fast simulated annealing.

Figure 1. Cost function profiles for 12 parameters within
the CHASM land surface model.
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what parameter values would be optimal, we use the default
values for the parameters that are being held fixed. The
default values are the best guess for the parameter values
based on expert opinion and what can be inferred from
observations. The results show that the most important
parameters are minimum stomatal resistance (RCMIN)
and vegetation roughness length (Z0V). In addition,
vegetation albedo (ALBV), vegetation fraction (VEGM),
maximum soil moisture holding capacity (WRMAX), and
initial soil temperature (TS) have some influence on simu-
lation errors. The other parameters such as ground albedo
(ALBG), snow albedo (ALBN), maximum leaf average
index (LEFM), vegetation fraction cover seasonality
(VEGS), ground roughness length (Z0G), and snow
roughness index (Z0N) have negligible effect on simulation
errors. Because Cabauw is nearly completely covered by
vegetation for all seasons, the parameters that end up being
most important are related to vegetation. Other parameters
such as ALBG and Z0G, which are related to bare soil, and
VEGS, which is concerned with the seasonal variation of
vegetation fraction cover, have little effect on simulation
errors.
[23] The parameters that are important are partly a func-

tion of the observations that are used to evaluate model
performance. For instance, snow albedo (ALBN) may have
affected the cost function more if observations of snow
depth and snowmelt were available and used within the
definition of the cost function. In contrast, minimum sto-
matal resistance (RCMIN), vegetation roughness length
(Z0V), and the vegetation fraction (VEGM) can be more
directly related to sensible and LHs.

4.3. Specification of Cost Function Scaling Factor

[24] The multidimensional PPD is intended to provide
information about the relative likelihood of different
choices of model parameters. Obviously, if there is a lot
of uncertainty within the observations or model predic-
tions, it would be very difficult to state confidently that
one parameter set is significantly better than any other. In
this case the PPD should look rather flat, giving nearly
equal weight to all parameters. While the covariance
matrix within the cost function could give an appropriate
weighting and thus scaling of the relative likelihood
between alternate parameter choices, often we do not have
complete knowledge of this uncertainty. In the case of the
Cabauw data, the published uncertainty estimates [Beljaars
and Bosveld, 1997] are given by monthly means rather
than in terms of errors in the half-hourly measurements
that are used within the cost function. We can use these
published monthly mean error estimates to help determine
an appropriate scaling factor that will shape the probability
distributions. After one has mapped the multidimensional
cost function surface using BSI, one may rank all the
models according to their cost. The lowest value of the
cost function (Emin) corresponds to the cost of the optimal
parameter set. Given estimates of the errors in the data we
can identify a cost function threshold (Ethresold) that is
representative of the uncertainty in the data. In the case of
the Cabauw data set, we assume that the published error
estimates of ±5 and ±10 W/m2 for monthly mean sensible
and LHs are estimates of the two-sigma error (the 95%
confidence interval). We identified the cost function

threshold (Ethreshold) that specifies when 95% of the
selected model parameter sets are within ±5 W/m2 of the
SHs of the optimal model prediction. One could have gone
through this exercise using published uncertainty estimates
of the LHs; however, we found that we obtained nearly the
same answer. We then apply the logic that parameter sets
that are �E (�E = Ethreshold � Emin) away from the
optimal parameter set will be given a likelihood measure
(equation (2)) of exp(�2), which is equivalent to the 95%
probability measure for a Gaussian distribution. This
implies S = 2/�E.
[25] For the BSI analysis of the Cabauw data and partic-

ular definition of the cost function, we found that 46.7 is the
most appropriate value for the scaling factor for the BSI
analysis based on VFSA and 76.7 is the appropriate value
for the analysis using the Gibbs’ sampler. One may confirm
that this provides an adequate description of the uncertainty
later on when we show that the 95% confidence interval
encompasses most of the observed monthly mean sensible
and LHs (see section 5). The appropriateness of the scaling
factor for the Gibbs’ sampler is less certain than the one for
VFSA since there were so few parameter sets included
within the uncertainty of observations (only 57 sets for the
Gibbs’ sampler as opposed to 34,080 sets for VFSA).

5. Results

[26] The marginal PPD gives some indication of the
shape of the multidimensional PPD for particular parameter
‘‘dimensions’’ of interest. Shown in Figure 2 is the approx-
imate marginal PPD derived from the BSI methodology
based on VFSA (solid) and the Gibbs’ sampler (dashed).
The number of forward model integrations required to
generate stable distributions differed between these two
approaches, with VFSA requiring substantially fewer iter-
ations (24,000) than the Gibbs’ sampler (942,000). More-
over, the BSI analysis based on VFSA was able to identify
over 600 times the number of parameter sets within obser-
vational uncertainties relative to the Gibbs’ sampler.
[27] The multidimensional PPD has been normalized by

its volume integral. From this scaling one may infer the
relative importance of each parameter by the vertical
scaling of the marginal PPDs. For parameters that are
the most important (RCMIN, Z0V, VEGM) the probability
distribution estimated by VFSA is quite similar to that
estimated by the Gibbs’ sampler. The differences that are
apparent between these two distributions are more evident
within parameters that may be considered less important.
Less weight should be given to specific features within
these distributions as individual peaks may reflect artifacts
of the sampling rather than real features of the cost
function.
[28] The circles in Figure 2 show the optimal parameters

that were identified using BSI. The circles often line up
with the peaks in the marginal PPD, although this is not
always the case since there is no requirement that optimal
parameters are also the most probable. The probability
assigned to a particular parameter value through the PPD
involves a combined measure of the likelihood function and
the frequency at which parameter values within a given
neighborhood are selected. There also can be differences
that arise from the fact that we are looking at a one-
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dimensional projection of a multidimensional PPD. The
optimal parameters that were identified through the MC
analysis are indicated by triangles. For many of the param-
eters, the optimal set obtained through the BSI and MC
methods are similar, especially for the parameters that are
the most influential. These optimal parameter sets can differ
substantially from the default parameter set (indicated by
a cross).
[29] Also shown in Figure 2 is the PPD one would obtain

from the linear cost function profiles of Figure 1. The
difference between the linear calculation and the probability
distributions based on either of the VFSA or the Gibbs’
sampler gives one indication of the effects of model
interdependences on joint probability distributions.
[30] The parameters that were expected to be important

through consideration of the cost function profiles (RCMIN,
Z0V) are among the parameters that have been identified
through the BSI analysis to be influential. However, the BSI
analysis also reveals that VEGM increased its relative
influence as compared to what was expected from the cost
function profile analysis. One potential explanation for
this is that VEGM has a correlation of �0.26 with Z0V
(Table 2), one of the two most important parameters, and

that this association increased VEGM’s relative influence
(note that for parameters that are linearly dependent, a
significant correlation is usually reserved for correlation
values of 0.4 or higher. However, when nonlinearities may
be important the true significance of interparameter depen-
dencies may be underrepresented by the correlation coeffi-
cient.) Moreover, the cost function profiles were created
using the default parameter settings. The default setting for
Z0V is significantly larger than what the BSI analysis
shows to be the most favorable setting. This ‘‘error’’ may
have affected our perception of the true importance of
percent vegetation cover (VEGM). Something similar
may be affecting the relative importance of ALBV and
TS. The cost function profiles would suggest that ALBV
should be more important than TS as the cost function
reaches a lower minimum for ALBV than TS. The correla-
tion matrix shows that TS is not strongly correlated with any
other parameter, which suggests that something must be
reducing the relative importance of ALBV. In this case
vegetation albedo (ALBV) is strongly correlated with
minimum canopy resistance (RCMIN) and the slight over-
estimate in RCMIN’s default setting may have unduly
given too much weight to ALBV.

Figure 2. Marginal PPD results from analyses based on VFSA (solid line), Gibbs’ sampler (dashed
line), and cost function profiles (dash-dotted line). The two boxes joined by a line indicate the Pareto set
from the MC analysis. Also shown are the best performing parameter sets for VFSA (circles) and MC
(triangles). The default parameter set is indicated by a cross.
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[31] The uncertainty in the specification of the optimal
parameters between the BSI and MC methods is quite
different. The range of acceptable solutions indicated by
the Pareto set (indicated in Figure 2 by a line and two

boxes) is nearly unbounded for the two most important
parameters RCMIN and Z0V. If, however, we left obser-
vations of ground heat flux out of the definition of the cost
function, the range of the Pareto set reduces to nearly a

Table 2. Correlation Matrix of 12 of the CHASM Land Surface Model Parametersa

Parameter ALBG ALBN ALBV LEFM VEGM VEGS RCMIN WRMAX Z0G Z0N Z0V TS

ALBG 1.00
ALBN 0.09 1.00
ALBV �0.16 �0.05 1.00
LEFM �0.08 �0.08 0.06 1.00
VEGM 0.11 0.14 �0.07 �0.06 1.00
VEGS �0.10 �0.14 0.00 0.08 �0.13 1.00
RCMIN �0.02 �0.07 0.54 0.09 �0.11 0.06 1.00
WRMAX �0.09 �0.06 �0.11 0.02 �0.03 0.05 �0.14 1.00
Z0G 0.07 0.06 �0.05 �0.02 0.11 0.00 �0.06 0.01 1.00
Z0N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Z0V �0.14 �0.13 0.05 0.01 �0.26 0.12 0.09 0.04 �0.33 0.00 1.00
TS �0.03 0.00 �0.03 �0.03 �0.01 0.03 �0.01 0.01 �0.01 0.00 0.04 1.00

aCorrelations >0.25 are bolded. ALBG, ground albedo; ALBN, snow albedo; ALBV, vegetation albedo; LEFM, maximum leaf average index; VEGM,
vegetation fraction; VEGS, vegetation fraction cover seasonality; RCMIN, minimum stomatal resistance; WRMAX, maximum soil moisture holding
capacity; Z0G, ground roughness length; Z0N, snow roughness index; Z0V, vegetation roughness length; TS, initial soil temperature.

Figure 3. Seasonally averaged diurnal cycle of (a) sensible heat, (b) LHs, (c) net radiative fluxes, and
(d) ground heat fluxes for observations (circles), default parameter set (plus), best parameter set using
VFSA (solid line), and best parameter set using MC (dashed line).
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single point (not shown). This is because minimum canopy
resistance (RCMIN) and vegetation roughness length
(Z0V) have little impact on ground heat fluxes and
therefore are not well constrained by these observations.
As the Pareto set is defined from what would minimize the
cost function when one is uncertain about the relative
weighting between multiple criteria, it becomes clear that
the Pareto set shows what the maximum uncertainty is for
the observations that least constrain any given parameter.
Even if one were to leave observations of ground heat flux
out of the definition of the cost function, the fact that the
acceptable solutions are reduced to nearly a single point
indicates that in this case the Pareto set could also
underestimate the uncertainty. One must keep in mind that
the main purpose of the MC method is to estimate optimal
parameter sets. The optimal parameters obtained using the
MC method are nearly identical to those obtained from
BSI. The average monthly mean SHs for both methods
were found to be within 2.5 W/m2 of observations.
However, with BSI using VFSA, we were able to obtain
accurate estimates of the parameter uncertainties with only

twice the number of forward model evaluations as com-
pared to the MC methodology.
[32] Another way to visualize the performance of the

optimal parameters and their uncertainty is to display the
seasonally averaged diurnal cycle comparison between
observations and model predictions. The performance of
the optimal parameters using BSI (solid), MC (dashed), and
the default parameter set (plus) as compared to observations
of SHs, LHs, net radiation, and ground heat flux (circles) is
shown in Figures 3a–3d. The predictions of optimal param-
eters are nearly identical for all fields during all seasons and
are substantially closer to observations than the default
parameter set. There is close agreement between model
predictions and observations of SHs and net radiation, fairly
good agreement with observations of LHs for all seasons
except spring, and particularly poor agreement with ground
heat fluxes during winter and spring. A similar mismatch
between simulations and observations can be found in the
work of Chen et al. [1997]. The poor match to ground heat
fluxes may in part be due to errors in the observations which
must be inferred from measured temperature differences in

Figure 4. Seasonally averaged diurnal cycle of (a) SHs, (b) LHs, (c) net radiative fluxes, and (d) ground
heat fluxes for observations (circles) and outer envelope of CHASM land surface model predictions using
parameter sets included within the 95% (solid line) and 60% (dashed line) probability volume of the
multidimensional PPD.
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the soil between 0- and 2-cm depth or extrapolated from
heat fluxes at 5- and 10-cm depth. However, there are
known inadequacies in the formulation of snow evaporation
that may account for some of the large differences that occur
during winter and spring [Slater et al., 2001].
[33] The outer envelope for model predictions using

parameter sets within the 95 and 60% confidence intervals
for the seasonally averaged diurnal cycle for each of the
observations are displayed in Figures 4a–4d. Figure 5
shows these same envelopes and a comparison to observa-
tions for predictions of monthly means. The number of
parameter sets that are included in the 95 and 60% confi-
dence intervals is 34,080 and 13,475, respectively, out of a
possible total of 97,311. The number of models within each
of these ranges depends on the total number of forward
model evaluations used within the analysis. Depending on
how well one needs to describe the probability distribution
of a given confidence interval, one may need to pick a
random sampling from these parameter sets or continue the
BSI analysis until a suitable number has been reached. The
95% confidence interval includes observations for all sea-
sons and for all observations except ground heat flux during
winter and spring and part of the morning hours during
summer and fall. Moreover, the 95% confidence interval
includes most of the predictions of the default model except
for SHs during summer, and ground heat fluxes during
winter and spring. The joint probability of the default
parameter set is 4%, which places it just outside the two-
sigma uncertainty limit and nominally could be excluded as
a realistic combination of model parameters. This evalua-
tion, however, is relative to the optimal parameter set which
has its own deficiencies (particularly with its predictions of
ground heat flux).

6. Summary and Conclusions

[34] We have presented a new approach to optimal
parameter and uncertainty estimation using BSI. We have

applied this analysis to the Cabauw data set in order to
constrain 12 parameters within the CHASM land surface
model. The primary objective of the BSI analysis is to
derive a multidimensional PPD, which can be an intense
computation. We show that a BSI analysis using VFSA can
reduce the number of required model evaluations by over
40 times what is required by the Gibbs’ sampler, with little
difference in derived marginal probability distributions for
individual model parameters. We have compared the ability
of BSI and MC methods to identify the optimal parameters
and found they give nearly identical results but that esti-
mates of uncertainty differed substantially. Although MC
gives a range of possible optimal parameters through the
concept of a Pareto set, we found that these ranges did not
provide a consistent or representative view of the uncer-
tainty within the observational data.
[35] The three most important parameters of the CHASM

model are minimum stomatal resistance, vegetation rough-
ness length, and vegetation fraction cover. The importance
of these parameters is likely due to the fact that Cabauw is
nearly 100% covered by vegetation year round. We also
observed that there are important relationships between
model parameters that cause an uncertainty in one parameter
to affect the uncertainty in other parameters. Because of
this, it is important that when choosing parameter sets to
represent the predictive uncertainty of the CHASM model
within climate model simulations, the parameter sets need to
reflect the interdependencies between model parameters.
These sets may either be obtained directly from the sets
that make up the multidimensional PPD or estimated from
the mean and covariance matrix derived from the PPD if
and only if the PPD itself is well approximated by a
Gaussian distribution.

[36] Acknowledgments. The G. Unger Vetlesen Foundation sup-
ported C.J. and Y.X. Special thanks go to Hoshin Gupta for providing
the MC methodology and Andy Pitman for providing the CHASM land
surface model. We acknowledge the Royal Netherlands Meteorological
Institute for providing the Cabauw data set.

Figure 5. Monthly mean (a) SHs, (b) LHs, (c) net radiative fluxes, and (d) ground heat fluxes for
observations (dots) and outer envelope of CHASM land surface model predictions using parameter sets
included within the 95% (solid line) and 60% (dashed line) probability volume of the multidimensional
PPD.
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